Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.307
Filtrar
1.
Dev Psychobiol ; 66(4): e22492, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643360

RESUMO

During adolescence, emotion regulation and reactivity are still developing and are in many ways qualitatively different from adulthood. However, the neurobiological processes underpinning these differences remain poorly understood, including the role of maturing neurotransmitter systems. We combined magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (dACC) and self-reported emotion regulation and reactivity in a sample of typically developed adolescents (n = 37; 13-16 years) and adults (n = 39; 30-40 years), and found that adolescents had higher levels of glutamate to total creatine (tCr) ratio in the dACC than adults. A glutamate Í age group interaction indicated a differential relation between dACC glutamate levels and emotion regulation in adolescents and adults, and within-group follow-up analyses showed that higher levels of glutamate/tCr were related to worse emotion regulation skills in adolescents. We found no age-group differences in gamma-aminobutyric acid+macromolecules (GABA+) levels; however, emotion reactivity was positively related to GABA+/tCr in the adult group, but not in the adolescent group. The results demonstrate that there are developmental changes in the concentration of glutamate, but not GABA+, within the dACC from adolescence to adulthood, in accordance with previous findings indicating earlier maturation of the GABA-ergic than the glutamatergic system. Functionally, glutamate and GABA+ are positively related to emotion regulation and reactivity, respectively, in the mature brain. In the adolescent brain, however, glutamate is negatively related to emotion regulation, and GABA+ is not related to emotion reactivity. The findings are consistent with synaptic pruning of glutamatergic synapses from adolescence to adulthood and highlight the importance of brain maturational processes underlying age-related differences in emotion processing.


Assuntos
Regulação Emocional , Ácido Glutâmico , Adulto , Humanos , Adolescente , Giro do Cíngulo/química , Giro do Cíngulo/fisiologia , Ácido gama-Aminobutírico/análise , Receptores de Antígenos de Linfócitos T/análise
2.
Neuroinformatics ; 22(2): 135-145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386228

RESUMO

Magnetic resonance spectroscopy (MRS) is widely used to estimate concentrations of glutamate and γ -aminobutyric acid (GABA) in specific regions of the living human brain. As cytoarchitectural properties differ across the brain, interpreting these measurements can be assisted by having knowledge of such properties for the MRS region(s) studied. In particular, some knowledge of likely local neurotransmitter receptor patterns can potentially give insights into the mechanistic environment GABA- and glutamatergic neurons are functioning in. This may be of particular utility when comparing two or more regions, given that the receptor populations may differ substantially across them. At the same time, when studying MRS data from multiple participants or timepoints, the homogeneity of the sample becomes relevant, as measurements taken from areas with different cytoarchitecture may be difficult to compare. To provide insights into the likely cytoarchitectural environment of user-defined regions-of-interest, we produced an easy to use tool - InSpectro-Gadget - that interfaces with receptor mRNA expression information from the Allen Human Brain Atlas. This Python tool allows users to input masks and automatically obtain a graphical overview of the receptor population likely to be found within. This includes comparison between multiple masks or participants where relevant. The receptors and receptor subunit genes featured include GABA- and glutamatergic classes, along with a wide range of neuromodulators. The functionality of the tool is explained here and its use is demonstrated through a set of example analyses. The tool is available at https://github.com/lizmcmanus/Inspectro-Gadget .


Assuntos
Encéfalo , Ácido gama-Aminobutírico , Humanos , Ácido gama-Aminobutírico/análise , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neurotransmissores , Ácido Glutâmico
3.
Food Chem ; 445: 138693, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350197

RESUMO

The impacts of varying germination periods (0-72 h) on morphological properties, proximate composition, amino acid profile, GABA levels, antioxidant attributes, polyphenol content (both free and bound), and volatile compounds of quinoa were evaluated. Germination significantly increased the content of fiber, amino acids, GABA, polyphenols, and in-vitro antioxidant activities in quinoa. The optimal nutritional quality and antioxidant capacity of quinoa were observed during the 36-72 h germination period. We examined the dynamics of 47 phenolic compounds in quinoa during germination and noted a substantial rise in free phenolic acids and bound flavonoids post-germination. A total of 53 and 84 volatile compounds were respectively identified in ungerminated quinoa and germinated quinoa. It was found that the germination period of 24-48 h contributed to reducing the presence of undesirable flavors. TEM analysis revealed significant structural damage to the ultrastructure and relaxation of the cell wall in germinated quinoa grains.


Assuntos
Antioxidantes , Chenopodium quinoa , Antioxidantes/química , Chenopodium quinoa/química , Sementes/química , Polifenóis/análise , Valor Nutritivo , Ácido gama-Aminobutírico/análise , Germinação
4.
Arch Insect Biochem Physiol ; 115(1): e22085, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288497

RESUMO

Amino acids (AAs) are an abundant class of nectar solutes, and they are involved in the nectar attractiveness to flower visitors. Among the various AAs, proline is the most abundant proteogenic AA, and γ-amino butyric acid (GABA) and ß-alanine are the two most abundant non-proteogenic AAs. These three AAs are known to affect insect physiology, being involved in flight metabolism and neurotransmission. The aim of this study was to investigate the effects of artificial diets enriched with either ß-alanine, GABA, or proline on consumption, survival, and hemolymph composition in honey bees belonging to two different ages and with different metabolism (i.e., newly emerged and foragers). Differences in feed intake among diets were not observed, while a diet enriched with ß-alanine improved the survival rate of newly emerged honey bees compared to the control group. Variations in the hemolymph AA concentrations occurred only in newly emerged honey bees, according to the diet and the time of hemolymph sampling. A greater susceptibility of young honey bees to enriched diets than older honey bees was observed. The variations in the concentrations of hemolymph AAs reflect either the accumulation of dietary AAs or the existence of metabolic pathways that may lead to the conversion of dietary AAs into different ones. This investigation could be an initial contribution to studying the complex dynamics that regulate hemolymph AA composition and its effect on honey bee physiology.


Assuntos
Aminoácidos , Néctar de Plantas , Abelhas , Animais , Aminoácidos/metabolismo , Néctar de Plantas/análise , Néctar de Plantas/metabolismo , Hemolinfa/metabolismo , Dieta , beta-Alanina/análise , beta-Alanina/metabolismo , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo , Prolina/análise , Prolina/metabolismo
5.
Clin Chim Acta ; 552: 117650, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956824

RESUMO

Schizophrenia is a serious mental disease with unknown etiology that affects approximately 1 % of the population around the world. Altered levels of amino acid neurotransmitters may underlie the physiopathology of schizophrenia (SZ). This study aimed to develop a rapid and robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of glutamate acid (Glu), aspartic acid (Asp), γ-aminobutyric acid (GABA), glycine acid (Gly), and Taurine acid (Tau) in patients with schizophrenia plasma and establish reference intervals for Chinese adult populations, and applied to patients with schizophrenia for a preliminary exploration of changes in their plasma levels of five amino acid neurotransmitters. Sample treatment involved protein precipitation followed by dansyl chloride (DNS-Cl) derivatization and total run time is 5.8 min. The method was validated according to the latest national and international guidelines, which achieved acceptable precision (0.54-14.54 %) and accuracy (97.06-103.82 %). The reference interval for Glu, Asp, Gly, Tau, and GABA were 55.51-189.06, 27.51-92.38, 204.01-574.55, 107.50-227.65, and <1 µmol/L, respectively. Increased Tau levels and decreased Asp and Glu levels were shown in patients with schizophrenia. This method was suitable for clinical routine detection of plasma 5 amino acid neurotransmitters in Chinese adult populations.


Assuntos
Aminoácidos , Esquizofrenia , Adulto , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Esquizofrenia/diagnóstico , Neurotransmissores/análise , Neurotransmissores/química , Ácido gama-Aminobutírico/análise , Glicina , China , Cromatografia Líquida de Alta Pressão/métodos
6.
Eur Psychiatry ; 66(1): e84, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848404

RESUMO

BACKGROUND: Observations from different fields of research coincide in indicating that a defective gamma-aminobutyric acid (GABA) interneuron system may be among the primary factors accounting for the varied clinical expression of schizophrenia. GABA interneuron deficiency is locally expressed in the form of neural activity desynchronization. We mapped the functional anatomy of local synchrony in the cerebral cortex in schizophrenia using functional connectivity MRI. METHODS: Data from 86 patients with schizophrenia and 137 control subjects were obtained from publicly available repositories. Resting-state functional connectivity maps based on Iso-Distant Average Correlation measures across three distances were estimated detailing the local functional structure of the cerebral cortex. RESULTS: Patients with schizophrenia showed weaker local functional connectivity (i.e., lower MRI signal synchrony) in (i) prefrontal lobe areas, (ii) somatosensory, auditory, visual, and motor cortices, (iii) paralimbic system at the anterior insula and anterior cingulate cortex, and (iv) hippocampus. The distribution of the defect in cortical area synchrony largely coincided with the synchronization effect of the GABA agonist alprazolam previously observed using identical functional connectivity measures. There was also a notable resemblance between the anatomy of our findings and cortical areas showing higher density of parvalbumin (prefrontal lobe and sensory cortices) and somatostatin (anterior insula and anterior cingulate cortex) GABA interneurons in humans. CONCLUSIONS: Our results thus provide detail of the functional anatomy of synchrony changes in the cerebral cortex in schizophrenia and suggest which elements of the interneuron system are affected. Such information could ultimately be relevant in the search for specific treatments.


Assuntos
Esquizofrenia , Humanos , Córtex Cerebral , Córtex Pré-Frontal , Giro do Cíngulo , Ácido gama-Aminobutírico/análise , Imageamento por Ressonância Magnética
7.
Cereb Cortex ; 33(19): 10441-10452, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37562851

RESUMO

Attention levels fluctuate during the course of daily activities. However, factors underlying sustained attention are still unknown. We investigated mechanisms of sustained attention using psychological, neuroimaging, and neurochemical approaches. Participants were scanned with functional magnetic resonance imaging (fMRI) while performing gradual-onset, continuous performance tasks (gradCPTs). In gradCPTs, narrations or visual scenes gradually changed from one to the next. Participants pressed a button for frequent Go trials as quickly as possible and withheld responses to infrequent No-go trials. Performance was better for the visual gradCPT than for the auditory gradCPT, but the 2 were correlated. The dorsal attention network was activated during intermittent responses, regardless of sensory modality. Reaction-time variability of gradCPTs was correlated with signal changes (SCs) in the left fronto-parietal regions. We also used magnetic resonance spectroscopy (MRS) to measure levels of glutamate-glutamine (Glx) and γ-aminobutyric acid (GABA) in the left prefrontal cortex (PFC). Glx levels were associated with performance under undemanding situations, whereas GABA levels were related to performance under demanding situations. Combined fMRI-MRS results demonstrated that SCs of the left PFC were positively correlated with neurometabolite levels. These findings suggest that a neural balance between excitation and inhibition is involved in attentional fluctuations and brain dynamics.


Assuntos
Ácido Glutâmico , Glutamina , Humanos , Ácido Glutâmico/análise , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Córtex Pré-Frontal , Ácido gama-Aminobutírico/análise
8.
Molecules ; 28(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513360

RESUMO

Graviera is a very popular yellow hard cheese produced in mainland Greece and the Aegean islands, and in three PDO (protected denomination of origin) locations. Apart from geographic location, type of milk and production practices are also factors that affect cheese composition, and make this dairy product unique in taste and aroma. In this work, 1H nuclear magnetic resonance (NMR) spectroscopy in combination with chemometrics has been used to determine the metabolite profile (40 compounds) of graviera cheese produced in different geographic locations, with emphasis on cheeses produced on the island of Crete. Organic acids and amino acids were the main components quantified in the polar cheese fraction, while the fatty acid (FA) composition of the lipid fraction was also obtained. Analysis of variance (Anova) of the dataset showed that γ-aminobutyric acid (GABA), conjugated linoleic acids (CLA) and linoleic acid differentiate gravieras produced in different areas of Crete, and that the total amino acid content was higher in cheeses produced in eastern Crete. Targeted discriminant analysis models classified gravieras produced in mainland Greece, Cyclades and Crete based on differences in 1,2-diglycerides, sterols, GABA and FA composition. Targeted and untargeted orthogonal partial least squares discriminant analysis (OPLS-DA) models were capable of differentiating gravieras produced in the island of Crete and hold promise as the basis for the authentication of PDO graviera products.


Assuntos
Queijo , Animais , Queijo/análise , Grécia , Ácidos Graxos/análise , Leite/química , Espectroscopia de Ressonância Magnética , Metabolômica , Ácido gama-Aminobutírico/análise
9.
Microbiol Spectr ; 11(4): e0506322, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37347184

RESUMO

Several studies have described the contribution of glutamate-transforming microbiota to the development of chronic ailments. For instance, the blood concentration of glutamate is higher in some patients with fibromyalgia, chronic fatigue, and pain. Taking advantage of a naturally occurring strain of Bifidobacterium that is able to transform glutamate in γ-aminobutyric caid (GABA), B. adolescentis IPLA60004, we designed a placebo-controlled intervention to test if the presence of this GABA-producing bifidobacteria in mice was able to impact the concentration of glutamate in the blood in comparison with the administration of other strain of the same species lacking the genes of the glutamate decarboxylase (gad) cluster. Animals were fed every day with 8 log CFU of bacteria in a sterilized milk vehicle for 14 days. Samples from feces and blood were collected during this period, and afterwards animals were sacrificed, tissues were taken from different organs, and the levels of different metabolites were analyzed by ultrahigh-performance liquid chromatography coupled to mass spectrometry. The results showed that both bacterial strains orally administered survived in the fecal content, and animals fed B. adolescentis IPLA60004 showed a significant reduction of their glutamate serum concentration, while a nonsignificant decrease was observed for animals fed a reference strain, B. adolescentis LGM10502. The variations observed in GABA were influenced by the gender of the animals, and no significant changes were observed in different tissues of the brain. These results suggest that orally administered GABA-producing probiotics could reduce the glutamate concentration in blood, opening a case for a clinical trial study in chronic disease patients. IMPORTANCE This work presents the results of a trial using mice as a model that were fed with a bacterial strain of the species B. adolescentis, which possesses different active genes capable of degrading glutamate and converting it into GABA. Indeed, the bacterium is able to survive the passage through the gastric tract and, more importantly, the animals reduce over time the concentration of glutamate in their blood. The importance of this result lies in the fact that several chronic ailments, such as fibromyalgia, are characterized by an increase in glutamate. Our results indicate that an oral diet with this probiotic-type bacteria could reduce the concentration of glutamate and, therefore, reduce the symptoms associated with the excess of this neurotransmitter.


Assuntos
Bifidobacterium adolescentis , Fibromialgia , Probióticos , Camundongos , Animais , Bifidobacterium adolescentis/metabolismo , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Bifidobacterium/genética , Bifidobacterium/metabolismo , Fezes/microbiologia , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo
10.
Food Chem ; 419: 136088, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023675

RESUMO

The effects of postharvest melatonin treatment on antioxidant activity and γ-aminobutyric acid (GABA) biosynthesis in yellow-flesh peach fruit stored at 4 °C and 90% RH for 28 d were explored. Results showed that melatonin treatment was effective in maintaining firmness, total soluble solids content and color in peach fruit. Melatonin treatment significantly reduced H2O2 and MDA contents, enhanced high level of non-enzymatic antioxidant system (ABTS∙+ scavenging capacity), and increased the activity or content of antioxidant enzymes including CAT, POD, SOD and APX. Melatonin treatment increased the contents of total soluble protein and glutamate, while reducing total free amino acid content. Moreover, melatonin treatment up-regulated the expression of GABA biosynthesis genes (PpGAD1 and PpGAD4) and suppressed the expression of GABA degradation gene (PpGABA-T), resulting in the accumulation of endogenous GABA. These findings indicated that melatonin treatment exerted positive effects on improving antioxidant activity and promoting GABA biosynthesis in yellow-flesh peach fruit.


Assuntos
Melatonina , Prunus persica , Antioxidantes/análise , Melatonina/farmacologia , Prunus persica/química , Peróxido de Hidrogênio/metabolismo , Ácido gama-Aminobutírico/análise , Frutas/química
11.
J Food Sci ; 88(4): 1292-1307, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36815393

RESUMO

Spontaneously dried-fermented radishes have been consumed in China for hundreds of years and are usually fermented for a long time to acquire high quality. In this study, the spontaneously dried-fermented radishes with short-term manufacturing periods were made from five different varieties of radishes that grew in the same environment. In addition, the physicochemical characteristics (i.e., moisture content, soluble solid, and pH value), flavor profiles (i.e., free amino acids, organic acids, and volatile compounds), and functional properties (i.e., total phenolics content, total flavonoids content, sulforaphane content, and γ-aminobutyric acid [GABA] content) of these five raw radishes and spontaneously dried-fermented radishes were analyzed and compared. In detail, the content of volatile and nonvolatile compounds increased, especially in oxalic acid, succinic acid, and umami free amino acids. Furthermore, functional components, such as sulforaphane and GABA, were also enriched via spontaneous fermentation after drying. In addition, the results of principal component analysis, hierarchical clustering analysis, and redundancy analysis showed that there were significant discrepancies appeared when raw radishes were processed via spontaneous fermentation or not. These results suggested that the process of spontaneous fermentation after drying may contribute to improving the quality of fresh radishes. Notably, radishes with red skin and flesh were regarded as exceptional varieties for processing, because of the preferable flavor profiles and affluent functional substances via spontaneous fermentation after drying. Therefore, these findings could deliver a systematical insight into developing processed radishes with high quality. PRACTICAL APPLICATION: The spontaneously dried-fermented radishes were manufactured through the process of spontaneous fermentation after drying, which acquired tasty and healthy characteristics by accumulating the volatile and nonvolatile compounds as well as the functional components, like total phenolics, total flavonoids, sulforaphane, and γ-aminobutyric acid. Importantly, because of the excellent processing properties, the radishes with red skin and flesh could be more appropriate to produce spontaneously dried-fermented radishes. Our findings may provide a practical strategy for developing vegetable relishes with superb flavor profiles and good functional properties in pickled vegetables.


Assuntos
Fermentação , Manipulação de Alimentos , Raphanus , Aminoácidos/análise , Flavonoides/análise , Ácido gama-Aminobutírico/análise , Raphanus/química , Verduras/química , Manipulação de Alimentos/métodos , China
12.
Hum Brain Mapp ; 44(6): 2654-2663, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36840505

RESUMO

Seasonal changes in neurotransmitter systems have been demonstrated in imaging studies and are especially noticeable in diseased states such as seasonal affective disorder (SAD). These modulatory neurotransmitters, such as serotonin, are influencing glutamatergic and GABAergic neurotransmission. Furthermore, central components of the circadian pacemaker are regulated by GABA (the suprachiasmatic nucleus) or glutamate (e.g., the retinohypothalamic tract). Therefore, we explored seasonal differences in the GABAergic and glutamatergic system in 159 healthy individuals using magnetic resonance spectroscopy imaging with a GABA-edited 3D-MEGA-LASER sequence at 3T. We quantified GABA+/tCr, GABA+/Glx, and Glx/tCr ratios (GABA+, GABA+ macromolecules; Glx, glutamate + glutamine; tCr, total creatine) in five different subcortical brain regions. Differences between time periods throughout the year, seasonal patterns, and stationarity were tested using ANCOVA models, curve fitting approaches, and unit root and stationarity tests, respectively. Finally, Spearman correlation analyses between neurotransmitter ratios within each brain region and cumulated daylight and global radiation were performed. No seasonal or monthly differences, seasonal patterns, nor significant correlations could be shown in any region or ratio. Unit root and stationarity tests showed stable patterns of GABA+/tCr, GABA+/Glx, and Glx/tCr levels throughout the year, except for hippocampal Glx/tCr. Our results indicate that neurotransmitter levels of glutamate and GABA in healthy individuals are stable throughout the year. Hence, despite the important correction for age and gender in the analyses of MRS derived GABA and glutamate, a correction for seasonality in future studies does not seem necessary. Future investigations in SAD and other psychiatric patients will be of high interest.


Assuntos
Ácido Glutâmico , Glutamina , Humanos , Espectroscopia de Ressonância Magnética/métodos , Estações do Ano , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Ácido gama-Aminobutírico/análise , Neurotransmissores , Receptores de Antígenos de Linfócitos T
13.
Headache ; 63(1): 104-113, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651572

RESUMO

OBJECTIVE: To explore gamma-aminobutyric acid (GABA) and glutamate/glutamine (Glx) levels in the right thalamus of patients with episodic migraine (EM) and chronic migraine (CM) and their effects on the chronification of migraine. BACKGROUND: Migraine affects approximately 1 billion people worldwide, with 2.5%-3% of people with EM progressing to CM each year. Magnetic resonance spectroscopy studies have revealed altered GABA and Glx levels in the thalamus of patients with migraine without aura, but these neurometabolic concentrations are underexplored in the thalamus of patients with CM. METHODS: In this cross-sectional study, patients with EM and CM were recruited. Mescher-Garwood point resolved spectroscopy sequence was used to acquire neurotransmitter concentrations in the right thalamus of patients with EM and CM and matched healthy controls (HCs). RESULTS: A total of 26 patients (EM, n = 11; CM, n = 15) and 16 age- and sex-matched HCs were included in the analysis. There were significantly lower GABA+/Water levels in the right thalamus of the CM group (mean ± standard deviation: 2.27 ± 0.4 [institutional units]) than that of the HC group (2.74 ± 0.4) (p = 0.026; mean difference [MD] = -0.5 [i.u.]), and lower Glx/Cr levels in the EM group (mean ± SD: 0.11 ± < 0.1) than in the HCs (0.13 ± < 0.1) and CM group (0.13 ± < 0.1) (p = 0.023, MD < -0.1, and p = 0.034, MD < -0.1, respectively). The GABA+/Glx ratio was lower in the CM group (mean ± SD: 0.38 ± 0.1) compared to the EM group (0.47 ± 0.1) (p = 0.024; MD = -0.1). The area under the curve for GABA+/Water levels in differentiating patients with CM from HCs was 0.83 (95% confidence interval 0.68, 0.98; p = 0.004). Correlation analyses within the migraine group revealed no significant correlation between metabolite concentration levels and headache characteristics after Bonferroni correction. CONCLUSION: Reduced GABA+/Water levels and imbalance of excitation/inhibition in the right thalamus may contribute to migraine chronification.


Assuntos
Glutamina , Transtornos de Enxaqueca , Humanos , Glutamina/análise , Glutamina/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Ácido Glutâmico , Estudos Transversais , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/metabolismo , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo , Tálamo/diagnóstico por imagem , Tálamo/metabolismo
14.
Biomed Chromatogr ; 37(1): e5513, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36129838

RESUMO

Tobacco smoking is a preventable main cause of fatal diseases. Accurate measurements of the effects it has on neurotransmitters are essential in developing new strategies for smoking cessation. Moreover, measurements of neurotransmitter levels can aid in developing drugs that counteract the effects of smoking. The aim of this study is to develop and validate a fast, simultaneous and sensitive method for measuring the levels of neurotransmitters in rat brain after the exposure of tobacco cigarettes. The selected neurotransmitters include dopamine, GABA, serotonin, glutamine and glutamate. The method is based on high-performance liquid chromatography-tandem mass spectrometry. Chromatographic separation was achieved within 3 min using a Zorbax SB C18 column (3.0 × 100 mm, 1.8 µm particle size). The mobile phase consisted of HPLC-grade water and acetonitrile each containing 0.3% heptafluorobutyric acid and 0.5% formic acid at gradient conditions. The linear range was 0.015-0.07, 825-7,218, 140-520, 63.42-160.75 and 38.25 × 103 to 110.35 × 103  ng/ml for dopamine, GABA, serotonin, glutamine and glutamate, respectively. Inter- and intra-run accuracy were in the range 97.82-103.37% with a precision (CV%) of ≤0.90%. The results revealed that 4 weeks of cigarette exposure significantly increased neurotransmitter levels after exposure to tobacco cigarettes in various brain regions, including the hippocampus and the amygdala. This increase in neurotransmitters levels may in turn activate the nicotine dependence pathway.


Assuntos
Espectrometria de Massas em Tandem , Produtos do Tabaco , Animais , Ratos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Serotonina/análise , Glutamina/metabolismo , Dopamina/análise , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Fumar , Neurotransmissores/análise , Encéfalo/metabolismo , Reprodutibilidade dos Testes , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo , Produtos do Tabaco/análise
15.
J Dairy Sci ; 106(2): 852-867, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36494222

RESUMO

This study developed and characterized a γ-aminobutyric acid (GABA)-enriched yogurt fermented by Levilactobacillus brevis CGMCC1.5954. The GABA content in the yogurt was 147.36 mg/100 mL, which was 317.06% higher than that of the control group. Furthermore, there was a significant improvement in the aroma, hardness, adhesion, cohesiveness, and gelatinousness of yogurt. The chromatography and metabolomics analyses further confirmed the high GABA content in yogurt and its nutritional value, and the metabolic pathway for GABA production by L. brevis 54 was identified. A total of 58 volatile flavor compounds were identified using headspace solid-phase microextraction-gas chromatography-mass spectrometry, of which 2-nonanone and 2-heptanone may be responsible for the high odor score of GABA-enriched yogurt. This study developed a nutritious and unique GABA-enriched flavored yogurt, summarized the metabolic pathway of GABA, and provided a flavor fingerprint that could guide the production of specifically flavored yogurts.


Assuntos
Levilactobacillus brevis , Animais , Fermentação , Iogurte/análise , Ácido gama-Aminobutírico/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Gasosa-Espectrometria de Massas/veterinária
16.
Food Chem ; 400: 133990, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36063678

RESUMO

This study evaluated the efficacy of Monascus purpureus fermentation on Saccharina japonica (SJ). Healthy substances and antioxidant activity of fermented SJ (FSJ) were determined. Results showed that fermentation caused the release of phenolic compounds and flavonoids, which resulted in the enhancement of antioxidant activity. Essential amino acids and γ-aminobutyric acid also greatly accumulated in FSJ. Sensory evaluation and gas chromatography-ion mobility spectrometry (GC-IMS) were used to evaluate flavor properties of FSJ. A lexicon consisted of 24 descriptors was established for SJ and FSJ, of which 14 descriptors were regarded as odor attributes. A total of 46 volatile compounds were identified by GC-IMS and showed positive correlation with odor attributes. Fifteen volatile compounds were screened as key compounds, tricarboxylic acid cycle, embden-meyerhof-parnas and amino acid catabolism were main formation metabolisms of them. Advanced properties of FSJ indicated that fermentation is a promising approach for the production of SJ food.


Assuntos
Kelp , Laminaria , Monascus , Compostos Orgânicos Voláteis , Aminoácidos/metabolismo , Aminoácidos Essenciais/metabolismo , Antioxidantes/análise , Fermentação , Flavonoides/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Laminaria/metabolismo , Monascus/metabolismo , Compostos Orgânicos Voláteis/análise , Ácido gama-Aminobutírico/análise
17.
Molecules ; 27(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36080467

RESUMO

When peanuts germinate, bioactive compounds such as resveratrol (RES), γ-aminobutyric acid (GABA), isoflavones, and polyphenol compounds are generated. Peanut kernels were germinated in the dark for two days, and stimuli including soaking liquid, rice koji, high-pressure processing (HPP), and ultrasonic treatment were tested for their ability to activate the defense mechanisms of peanut kernels, thus increasing their bioactive compound content. The results of this study indicate that no RES was detected in ungerminated peanuts, and only 5.58 µg/g of GABA was present, while unstimulated germinated peanuts contained 4.03 µg/g of RES and 258.83 µg/g of GABA. The RES content of the germinated peanuts increased to 13.64 µg/g after soaking in 0.2% phenylalanine solution, whereas a higher GABA content of 651.51 µg/g was observed after the peanuts were soaked in 0.2% glutamate. Soaking peanuts in 5% rice koji produced the highest RES and GABA contents (28.83 µg/g and 506.34 µg/g, respectively). Meanwhile, the RES and GABA contents of HPP-treated germinated peanuts (i.e., treated with HPP at 100 MPa for 10 min) increased to 7.66 µg/g and 497.09 µg/g, respectively, whereas those of ultrasonic-treated germinated peanuts (for 20 min) increased to 13.02 µg/g and 318.71 µg/g, respectively. After soaking peanuts in 0.5% rice koji, followed by HPP treatment at 100 MPa for 10 min, the RES and GABA contents of the germinated peanuts increased to 37.78 µg/g and 1196.98 µg/g, while the RES and GABA contents of the germinated peanuts treated with rice koji followed by ultrasonic treatment for 20 min increased to 46.53 µg/g and 974.52 µg/g, respectively. The flavonoid and polyphenol contents of the germinated peanuts also increased after exposure to various external stimuli, improving their DPPH free radical-scavenging ability and showing the good potential of germinated peanuts as functional products.


Assuntos
Antioxidantes , Oryza , Antioxidantes/análise , Antioxidantes/farmacologia , Arachis/química , Germinação/fisiologia , Oryza/química , Polifenóis/análise , Resveratrol/análise , Sementes/química , Ácido gama-Aminobutírico/análise
18.
J Gastroenterol ; 57(10): 748-760, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908139

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is a disorder of gut-brain interaction, including dysregulation of the hypothalamic-pituitary-adrenal axis with salivary cortisol changes. However, the role of gastrointestinal microbiota during IBS symptom exacerbation remains unclear. We tested the hypothesis that the microbial species, gene transcripts, and chemical composition of fecal and oral samples are altered during the exacerbation of IBS symptoms. METHODS: Fecal, salivary, and dental plaque samples were collected at baseline from 43 men with IBS with diarrhea (IBS-D) and 40 healthy control (HC) men. Samples in the IBS-D patients were also collected during symptom exacerbation. The composition of the fecal microbiota was determined by analyzing the 16S rRNA gene, RNA-based metatranscriptome, and metabolites in samples from HC and IBS patients with and without symptom exacerbation. Oral samples were also analyzed using omics approaches. RESULTS: The fecal microbiota during IBS symptom exacerbation exhibited significant differences in the phylogenic pattern and short-chain fatty acid compared with fecal samples during defecation when symptoms were not exacerbated. Although there were no significant differences in the phylogenic pattern of fecal microbiota abundance between HCs and IBS-D patients, significant differences were detected in the expression patterns of bacterial transcriptomes related to butyrate production and neuroendocrine hormones, including tryptophan-serotonin-melatonin synthesis and glutamine/GABA. The composition of plaque microbiota was different between HC and IBS-D patients during normal defecation. CONCLUSIONS: Our findings suggest that colonic host-microbial interactions are altered in IBS-D patients during exacerbation of symptoms. There were no overlaps between feces and oral microbiomes.


Assuntos
Síndrome do Intestino Irritável , Melatonina , Microbiota , Butiratos/análise , Diarreia/microbiologia , Ácidos Graxos Voláteis , Fezes/microbiologia , Glutamina/análise , Humanos , Hidrocortisona/análise , Sistema Hipotálamo-Hipofisário , Síndrome do Intestino Irritável/microbiologia , Masculino , Melatonina/análise , Sistema Hipófise-Suprarrenal , RNA Ribossômico 16S/genética , Serotonina , Exacerbação dos Sintomas , Triptofano/análise , Ácido gama-Aminobutírico/análise
19.
Food Chem ; 393: 133418, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35691062

RESUMO

In order to illustrate the relationship between methyl jasmonate (MeJA) and gamma aminobutyric acid (GABA) in maintaining the quality and improving the postharvest life of strawberry fruit, the harvested fruit were treated with MeJA for 16 h at 20 °C and stored at 3 ± 0.5 °C for 12 days. MeJA enhanced the expression levels of GABA shunt pathway-related genes, including glutamate decarboxylase, GABA transaminase, and succinic semialdehyde dehydrogenase, leading to an increase in GABA accumulation. Treated fruit showed higher levels of total acids, anthocyanins, total phenolics, antioxidants, and phenylalanine ammonia-lyase activity, and lower levels of cell membrane deterioration, total soluble solids, polyphenol oxidase activity and decay incidence rate. The results suggest that the positive effects of MeJA in extending the fruit postharvest life, enhancing phytochemical compounds, and decreasing the decay incidence rate may be due to the effects on motivating GABA shunt pathway and PAL enzyme activity.


Assuntos
Fragaria , Acetatos , Antocianinas/análise , Antioxidantes/análise , Ciclopentanos , Fragaria/química , Frutas/química , Oxilipinas , Compostos Fitoquímicos/análise , Ácido gama-Aminobutírico/análise
20.
Food Res Int ; 157: 111204, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761526

RESUMO

Glycine betaine (GB) has been reported to mitigate chilling injury of peach fruit during postharvest cold storage, but the effects of GB treatment on changes of fruit flavor and amino acid metabolism remain unclear. In this study, the changes of organic acids and amino acids in peach fruit treated with GB were analyzed through physiological and metabolomic methods. The results manifested that GB treatment reduced internal browning index and maintained higher contents of total soluble solids, titratable acidity, organic acids and total free amino acids. Electronic tongue analysis exhibited separation between GB-treated and control fruit. Additionally, GB treatment increased proline, polyamines and γ-aminobutyric acid (GABA) contents by higher enzyme activities and upregulated gene expressions of arginine metabolism, GABA shunt pathway and lower enzyme activities and downregulated gene expressions of polyamine degradation pathway. Thus, GB treatment could enhance flavor quality and cold tolerance of peach fruit during low temperature storage.


Assuntos
Prunus persica , Aminoácidos/análise , Betaína/análise , Betaína/metabolismo , Betaína/farmacologia , Frutas/química , Poliaminas/metabolismo , Prunus persica/química , Ácido gama-Aminobutírico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...